Ailanthus altissima (Tree-of-Heaven) Control

Rachel Brooks, Scott Salom, Anton Baudoin, Tom McAvoy
Current Distribution of *Ailanthus*

(Kowarik et al. 2007)
Ailanthus in Virginia

Roadways

Forests

Urban areas

Agricultural lands

(Kasson et al 2013, Asaro et al 2009)
(Side Story: the Spotted Lanternfly)

• New Invasive:
 • PA (2014)
 • NY and DE (2017)
 • Winchester, VA (2018)

• Report sightings:
 • ask.extension.org/groups/1981/ask

Control?
Current Control Options

General “rules”:
• Combination of mechanical and chemical treatment
• Target seed-bearing trees first
• Resurvey and retreat yearly
• Costly and time consuming
The best weapon against an enemy is another enemy.

Other Options?
Biological Control

Natural enemies:
• Viruses
• Bacteria
• Fungi
• Nematodes
• Arthropods
• Vertebrates
<table>
<thead>
<tr>
<th></th>
<th>Biological Control</th>
<th>Chemical Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Cheaper</td>
<td>Expensive</td>
</tr>
<tr>
<td>Target</td>
<td>Specific</td>
<td>Broad</td>
</tr>
<tr>
<td>Environmental Impact</td>
<td>Few</td>
<td>Natural enemy can become a pest</td>
</tr>
<tr>
<td>Environmental and Human Health Hazards</td>
<td>Can accumulate or move</td>
<td></td>
</tr>
<tr>
<td>Reapplication</td>
<td>Rarely</td>
<td>Often</td>
</tr>
<tr>
<td>Removal</td>
<td>Won’t eradicate</td>
<td>Can eradicate</td>
</tr>
<tr>
<td>Resistance</td>
<td>Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Time</td>
<td>Slow, but long-term</td>
<td>Fast, but short-term</td>
</tr>
<tr>
<td>Location</td>
<td>Can spread</td>
<td>Can’t spread</td>
</tr>
<tr>
<td>Available</td>
<td>No guarantees</td>
<td>No guarantees</td>
</tr>
</tbody>
</table>
Biological Control History
Types of Biological Control

Origin of natural enemy:
1. Classical/importation
2. Conservation/enhancement
1. Classical Biological Control

Step 1: Survey in native range & compile literature (finished in 2004)

(Photos: T. McAvoy)
1. Classical Biological Control

Step 2: Bring potential natural enemies to quarantine lab in US (2004)
= cause severe damage & host specific

Eucryptorrhynchus brandti (Curculionidae)
1. Classical Biological Control

Step 3: Rearing & Host Range Testing (2004– Present)

20 taxonomically related, 10 economically important, and 5 ecological associated species

(Photos: T. McAvoy)
Step 4: Regulatory approval and release (pending)

- Still in quarantine after 13 years
- In some circumstances it does feed on corkwood (a southern tree)
- Will petition for release, ultimately our government will determine safety of release

(Photos: T. McAvoy)
2. Conservation Biological Control

Step 1: Survey invaded range and all literature

- 9 insect herbivores
- 68 fungi
2. Conservation Biological Control

Step 2: Select potential natural enemy (guess correctly or get lucky)

= cause severe damage
= host specific

(Schall and Davis 2009, Snyder et al 2013, Snyder et al 2014, Rebbeck et al 2013)
2. Conservation Biological Control

Verticillium dahliae (Vd)
Verticillium nonalfalfa (Vn)

(Inderbitzin et al. 2011)
2. Conservation Biological Control

Step 3: Rearing & Host Range Study (2006 – present)

PA studies are promising:

• Vn > Vd
• Spreads
• Host specific
• Inoculation method
• Inoculation timing
• Effectively removes *Ailanthus*

(Schall and Davis 2009, Kasson et al 2014, O’Neal and Davis 2015, Schall 2008)
2. Conservation Biological Control

Step 3: Continued (VA Specific: Regional Efficacy)
2. Conservation Biological Control

Step 3: Continued (VA Specific: Regional Efficacy)

- Tree-of-heaven
- Other tree species
- Inoculated with Vn
- Inoculated with Vd
- Inoculated with Vd & Vn
- Inoculated with distilled water

37.2’ radius
2. Conservation Biological Control

Step 3: Continued (VA Specific: Regional Efficacy)

Bimonthly and monthly health ratings
OMPI

Control

Vd

Vn

Both
3MPI

Control

Vd

Vn

Both
2. Conservation Biological Control

Step 3: Continued (VA Specific: Regional Efficacy)

Vn and Both treatments are the most effective at inducing symptoms in VA.
2. Conservation Biological Control

Step 3: Continued (VA Specific: Regional Efficacy)

Average tree height and max temperature are significant covariates.
2. Conservation Biological Control

Step 3: Continued (VA Specific: Regional Efficacy)

Just *preliminary* results: Symptoms ≠ mortality
2. Conservation Biological Control

Step 3: Continued (VA Specific: Regional Efficacy)

Future:
• Restoration
• Vectors
• Long-term impact

...risk AND business!
2. Conservation Biological Control

Step 4: Regulatory approval and sale

Pesticide Registration

Requirements

Requirements for All Applicants

- Overview of Requirements for Pesticide Registration and Registrant Obligations
- Data Requirements
- Labeling
- Forms

Additional Requirements for Biopesticides

- Additional Considerations for Biopesticide Products (Chapter 3 of the Pesticide Registration Manual)
Summary: Biological controls

1. Pending!
2. Pending!
3. ?????
3. “Accidental” Biological Control?

(Hoebeke 2017, Photos: R. Rieder NJ Dept of Ag)
3. “Accidental” Biological Control?

(Hoebeke 2017, Photos: R. Rieder NJ Dept of Ag)
3. “Accidental” Biological Control?

Agrilus smaragdifrons

Research:
- Host range
- Impact on *Ailanthus*
- Where it is?
Biological Control Future?

Ideal natural enemy:
• Host specific
• Impacts pest
• Easy rearing/production
• Establishes well
• Spreads
• Affordable
• Easy application/use
Acknowledgements & Questions

- Virginia Tech Community
- Advisors & Committee Members
 - US Forest Service
- Field Technicians and Staff
 - Field Sites
 - You!
- rkbrooks@vt.edu